Natural Temperament

by Steven H. Cullinane on November 19, 1996

The table below gives a comparison of the 34-step equal-temperament octave with the standard 12-step equal-temperament octave.

In column A are the frequency ratios needed for harmonious chords. Column B is obtained by taking the products of the ratios in column A with one another, and column C is obtained by taking the products of the ratios of column A with those of column B. In this way, 37 frequency ratios are obtained, which map fairly precisely into the 34 values in the 34-note octave, as shown.

This mapping makes the 34-tone octave more "natural" than any other equal-temperament scheme with fewer than 53 notes to the octave. This fact seems to have been overlooked, at least through 1980 -- the year in which The New Grove Dictionary of Music was published. (See "interval" in that dictionary.)

. A B C . 34-Step Octave 12-Step Octave
# . . . = n 2n/34 % error t 2t/12 % error
0 1/1 . . 1.0000 0 1.0000 0 0 1.0000 0
1 . . 128/125 1.0240 1 1.0206 -0.33 . . .
2 . 25/24 . 1.0416 2 1.0416 +0.00 . . .
3 . 16/15 . 1.0667 3 1.0631 -0.34 1 1.0595 -0.68.
4 . . 27/25 1.0800 4 1.0850 +0.46 . . .
5 . 10/9 . 1.1111 5 1.1073 -0.34 . . .
6 . 9/8 . 1.1250 6 1.1301 +0.46 2 1.1225 -0.22
7 . . 144/125 1.1520 7 1.1534 +0.12 . . .
8 . . 125/108 1.1574 -0.35 . . .
9 . . 75/64 1.1719 8 1.1771 +0.45 . . .
10 . . 32/27 1.1852 -0.68 . . .
11 6/5 . . 1.2000 9 1.2014 +0.12 3 1.1892 -0.91
. . . . . 10 1.2261 . . . .
12 5/4 . . 1.2500 11 1.2514 +0.11 4 1.2599 +0.79
13 . 32/25 . 1.2800 12 1.2772 -0.22 . . .
14 . . 125/96 1.3021 13 1.3035 +0.11 . . .
15 4/3 . . 1.3333 14 1.3303 -0.23 5 1.3348 +0.11
16 . . 27/20 1.3500 15 1.3577 +0.57 . . .
17 . 25/18 . 1.3889 16 1.3857 -0.23 . . .
18 . . 45/32 1.4063 17 1.4142 +0.57 6 1.4142 +0.57
19 . . 64/45 1.4222 -0.57 -0.57
20 . 36/25 . 1.4400 18 1.4433 +0.23 . . .
21 . . 40/27 1.4815 19 1.4731 -0.57 . . .
22 3/2 . . 1.5000 20 1.5034 +0.23 7 1.4983 -0.11
23 . . 192/125 1.5360 21 1.5344 -0.11 . . .
24 . 25/16 . 1.5625 22 1.5660 +0.22 . . .
25 8/5 . . 1.6000 23 1.5982 -0.11 8 1.5874 -0.79
. . . . . 24 1.6311 . . . .
26 5/3 . . 1.6667 25 1.6647 -0.12 9 1.6818 +0.91
27 . . 27/16 1.6875 26 1.6990 +0.68 . . .
28 . . 128/75 1.7067 -0.45 . . .
29 . . 216/125 1.7280 27 1.7340 +0.35 . . .
30 . . 125/72 1.7361 -0.12 . . .
31 . 16/9 . 1.7778 28 1.7697 -0.46 10 1.7818 +0.22
32 . 9/5 . 1.8000 29 1.8062 +0.34 . . .
33 . . 50/27 1.8519 30 1.8434 -0.46 . . .
34 . 15/8 . 1.8750 31 1.8813 +0.34 11 1.8877 +0.68.
35 . 48/25 . 1.9200 32 1.9201 +0.01 . . .
36 . . 125/64 1.9531 33 1.9596 +0.33 . . .
37 2/1 . . 2.0000 34 2.0000 0 12 2.0000 0


Postscript of March 12, 2001:

For more on the 34-tone scale, see The Harmony Problem.

For some current references to harmony theory in literature, see Harmony, Schoenberg, and the Last Samurai.

For more information on actual use of the 34-tone scale, see Neil Haverstick's Virtual Chautauqua page.


Page created March 12, 2001. Return to Journal.

Copyright © 2001 by Steven H. Cullinane. All rights reserved.